Day 23: LAN Party
by @scarf005
Puzzle description
https://adventofcode.com/2024/day/23
Solution summary
The puzzle involves finding triangles and maximal cliques. The task is to determine:
- Part 1: Find the number of triangles in the graph.
- Part 2: Find the size of the largest clique in the graph.
Parsing the input
Both parts use undirected graphs, represented as:
type Connection = Map[String, Set[String]]
def parse(input: String): Connection = input
.split('\n')
.toSet
.flatMap { case s"$a-$b" => Set(a -> b, b -> a) } // 1)
.groupMap(_._1)(_._2) // 2)
1)
: botha -> b
andb -> a
are added to the graph so that the graph is undirected.2)
: a fancier way to writegroupBy(_._1).mapValues(_.map(_._2))
, check the docs for details.
Part 1
The goal is to find triangles that have a computer whose name starts with t
.
This could be checked by simply checking whether all three vertices are connected to each other, like:
// connection: Connection
extension (a: String)
inline infix def <->(b: String) =
connection(a).contains(b) && connection(b).contains(a)
def isValidTriangle(vertices: Set[String]): Boolean = vertices.toList match
case List(a, b, c) => a <-> b && b <-> c && c <-> a
case _ => false
Then it's just a matter of getting all neighboring vertices of each vertex and checking if they form a triangle:
def part1(input: String) =
val connection = parse(input)
extension (a: String)
inline infix def <->(b: String) =
connection(a).contains(b) && connection(b).contains(a)
def isValidTriangle(vertices: Set[String]): Boolean = vertices.toList match
case List(a, b, c) => a <-> b && b <-> c && c <-> a
case _ => false
connection
.flatMap { (vertex, neighbors) =>
neighbors
.subsets(2) // 1)
.map(_ + vertex) // 2)
.withFilter(_.exists(_.startsWith("t")))
.filter(isValidTriangle)
}
.toSet
.size
1)
: chooses two neighbors...2)
...and adds the vertex itself to form a triangle.
Part 2
This part is more complex, but there's a generalization of the problem: finding the size of the largest clique in the graph. We'll skip the explanation of the algorithm, but here's the code:
def findMaximumCliqueBronKerbosch(connections: Connection): Set[String] =
def bronKerbosch(
potential: Set[String],
excluded: Set[String] = Set.empty,
result: Set[String] = Set.empty,
): Set[String] =
if (potential.isEmpty && excluded.isEmpty) then result
else
// Choose pivot to minimize branching
val pivot = (potential ++ excluded)
.maxBy(vertex => potential.count(connections(vertex).contains))
val remaining = potential -- connections(pivot)
remaining.foldLeft(Set.empty[String]) { (currentMax, vertex) =>
val neighbors = connections(vertex)
val newClique = bronKerbosch(
result = result + vertex,
potential = potential & neighbors,
excluded = excluded & neighbors,
)
if (newClique.size > currentMax.size) newClique else currentMax
}
bronKerbosch(potential = connections.keySet)
Then we could map them over to get the password:
def part2(input: String) =
val connection = parse(input)
findMaximumCliqueBronKerbosch(connection).toList.sorted.mkString(",")
Final code
type Connection = Map[String, Set[String]]
def parse(input: String): Connection = input
.split('\n')
.toSet
.flatMap { case s"$a-$b" => Set(a -> b, b -> a) }
.groupMap(_._1)(_._2)
def part1(input: String) =
val connection = parse(input)
extension (a: String)
inline infix def <->(b: String) =
connection(a).contains(b) && connection(b).contains(a)
def isValidTriangle(vertices: Set[String]): Boolean = vertices.toList match
case List(a, b, c) => a <-> b && b <-> c && c <-> a
case _ => false
connection
.flatMap { (vertex, neighbors) =>
neighbors
.subsets(2)
.map(_ + vertex)
.withFilter(_.exists(_.startsWith("t")))
.filter(isValidTriangle)
}
.toSet
.size
def part2(input: String) =
val connection = parse(input)
findMaximumCliqueBronKerbosch(connection).toList.sorted.mkString(",")
def findMaximumCliqueBronKerbosch(connections: Connection): Set[String] =
def bronKerbosch(
potential: Set[String],
excluded: Set[String] = Set.empty,
result: Set[String] = Set.empty,
): Set[String] =
if (potential.isEmpty && excluded.isEmpty) then result
else
// Choose pivot to minimize branching
val pivot = (potential ++ excluded)
.maxBy(vertex => potential.count(connections(vertex).contains))
val remaining = potential -- connections(pivot)
remaining.foldLeft(Set.empty[String]) { (currentMax, vertex) =>
val neighbors = connections(vertex)
val newClique = bronKerbosch(
result = result + vertex,
potential = potential & neighbors,
excluded = excluded & neighbors,
)
if (newClique.size > currentMax.size) newClique else currentMax
}
bronKerbosch(potential = connections.keySet)
Solutions from the community
- Solution by Artem Nikiforov
- Solution by merlinorg
- Solution by Antoine Amiguet
- Solution by Raphaël Marbeck
- Writeup by Bulby
- Solution by Philippus Baalman
- Solution by Paweł Cembaluk
Share your solution to the Scala community by editing this page. You can even write the whole article! See here for the expected format