Skip to main content

Day 23: LAN Party

by @scarf005

Puzzle description

https://adventofcode.com/2024/day/23

Solution summary

The puzzle involves finding triangles and maximal cliques. The task is to determine:

  • Part 1: Find the number of triangles in the graph.
  • Part 2: Find the size of the largest clique in the graph.

Parsing the input

Both parts use undirected graphs, represented as:

type Connection = Map[String, Set[String]]

def parse(input: String): Connection = input
.split('\n')
.toSet
.flatMap { case s"$a-$b" => Set(a -> b, b -> a) } // 1)
.groupMap(_._1)(_._2) // 2)
  • 1): both a -> b and b -> a are added to the graph so that the graph is undirected.
  • 2): a fancier way to write groupBy(_._1).mapValues(_.map(_._2)), check the docs for details.

Part 1

The goal is to find triangles that have a computer whose name starts with t. This could be checked by simply checking whether all three vertices are connected to each other, like:

// connection: Connection

extension (a: String)
inline infix def <->(b: String) =
connection(a).contains(b) && connection(b).contains(a)

def isValidTriangle(vertices: Set[String]): Boolean = vertices.toList match
case List(a, b, c) => a <-> b && b <-> c && c <-> a
case _ => false

Then it's just a matter of getting all neighboring vertices of each vertex and checking if they form a triangle:

def part1(input: String) =
val connection = parse(input)

extension (a: String)
inline infix def <->(b: String) =
connection(a).contains(b) && connection(b).contains(a)

def isValidTriangle(vertices: Set[String]): Boolean = vertices.toList match
case List(a, b, c) => a <-> b && b <-> c && c <-> a
case _ => false

connection
.flatMap { (vertex, neighbors) =>
neighbors
.subsets(2) // 1)
.map(_ + vertex) // 2)
.withFilter(_.exists(_.startsWith("t")))
.filter(isValidTriangle)
}
.toSet
.size
  • 1): chooses two neighbors...
  • 2) ...and adds the vertex itself to form a triangle.

Part 2

This part is more complex, but there's a generalization of the problem: finding the size of the largest clique in the graph. We'll skip the explanation of the algorithm, but here's the code:

def findMaximumCliqueBronKerbosch(connections: Connection): Set[String] =
def bronKerbosch(
potential: Set[String],
excluded: Set[String] = Set.empty,
result: Set[String] = Set.empty,
): Set[String] =
if (potential.isEmpty && excluded.isEmpty) then result
else
// Choose pivot to minimize branching
val pivot = (potential ++ excluded)
.maxBy(vertex => potential.count(connections(vertex).contains))

val remaining = potential -- connections(pivot)

remaining.foldLeft(Set.empty[String]) { (currentMax, vertex) =>
val neighbors = connections(vertex)
val newClique = bronKerbosch(
result = result + vertex,
potential = potential & neighbors,
excluded = excluded & neighbors,
)
if (newClique.size > currentMax.size) newClique else currentMax
}

bronKerbosch(potential = connections.keySet)

Then we could map them over to get the password:

def part2(input: String) =
val connection = parse(input)
findMaximumCliqueBronKerbosch(connection).toList.sorted.mkString(",")

Final code

type Connection = Map[String, Set[String]]

def parse(input: String): Connection = input
.split('\n')
.toSet
.flatMap { case s"$a-$b" => Set(a -> b, b -> a) }
.groupMap(_._1)(_._2)

def part1(input: String) =
val connection = parse(input)

extension (a: String)
inline infix def <->(b: String) =
connection(a).contains(b) && connection(b).contains(a)

def isValidTriangle(vertices: Set[String]): Boolean = vertices.toList match
case List(a, b, c) => a <-> b && b <-> c && c <-> a
case _ => false

connection
.flatMap { (vertex, neighbors) =>
neighbors
.subsets(2)
.map(_ + vertex)
.withFilter(_.exists(_.startsWith("t")))
.filter(isValidTriangle)
}
.toSet
.size

def part2(input: String) =
val connection = parse(input)
findMaximumCliqueBronKerbosch(connection).toList.sorted.mkString(",")

def findMaximumCliqueBronKerbosch(connections: Connection): Set[String] =
def bronKerbosch(
potential: Set[String],
excluded: Set[String] = Set.empty,
result: Set[String] = Set.empty,
): Set[String] =
if (potential.isEmpty && excluded.isEmpty) then result
else
// Choose pivot to minimize branching
val pivot = (potential ++ excluded)
.maxBy(vertex => potential.count(connections(vertex).contains))

val remaining = potential -- connections(pivot)

remaining.foldLeft(Set.empty[String]) { (currentMax, vertex) =>
val neighbors = connections(vertex)
val newClique = bronKerbosch(
result = result + vertex,
potential = potential & neighbors,
excluded = excluded & neighbors,
)
if (newClique.size > currentMax.size) newClique else currentMax
}

bronKerbosch(potential = connections.keySet)

Solutions from the community

Share your solution to the Scala community by editing this page. You can even write the whole article! See here for the expected format